Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 15, 2026
-
Free, publicly-accessible full text available April 15, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 22, 2026
-
A 28-GHz multibeam joint communication and sensing system called SideSense is presented, in which a line-of-sight (LoS) beam is used to maintain reliable communication, while other sensing beams are used to enhance physiological motion detection. SideSense decodes the motion frequency and shape from the channel state information (CSI) by first tuning the gain ratio and phase differences between the LoS communication beam and non-LoS (NLoS) beam to maximize the sensing signal-to-noise ratio (SSNR) without significantly degrading the communication channel capacity (CCC). Analytical results based on a bistatic model are presented to show a gain ratio of around 1 and a phase difference of 90° or 270°, which are ideal for optimizing both SSNR and CCC. Experiments based on an array of phased array (APA) beamformers and orthogonal frequency-division multiplexing (OFDM) waveforms with phantom and human subjects are presented to validate the performance of SideSense. Results show that SideSense can improve SSNR by 84% while reducing CCC by 35%, an acceptable decrease within the normal operational parameters of a millimeter-wave (mmWave) communication system, which would not trigger a link reestablishment procedure, e.g., communication beam realignment.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
An overnight sleep study can provide vital health diagnostics yet typically involves applying and monitoring multiple body-contact sensors, which can interfere with sleep and require cumbersome manual data analysis. Doppler radar technology has been demonstrated to provide a non-invasive means of measuring vital signs through clothing and bedding, including respiratory rate, heart rate, motion activity, body position, and tidal respiratory volume. This paper examines the potential for applying physiological radar to assess sleep apnea and intervention strategies.more » « less
An official website of the United States government
